Review on Image Registration

Evolving from classic method to Deep learning

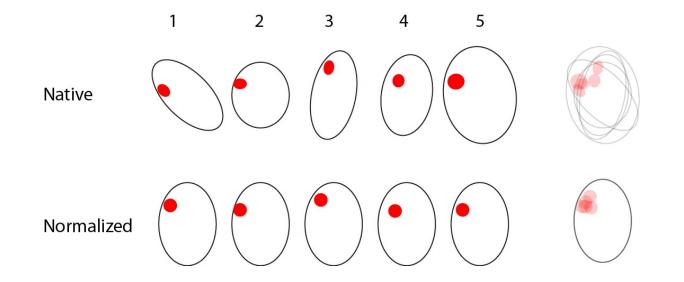


Table of content

- 1. Deformation modeling framework
- 2. Ideal mapping: Diffeomorphic metric mapping
- 3. Evolution from linear to non-linear mapping
- 4. Novel method: deep learning
- 5. Tackle on the Issues
 - Model a smooth mapping
 - Absence of "Gold Standard"
 - Invertibility unguaranteed
 - Shape collapse problem
- 6. Supplement
 - Modeling framework detail

Deformation Modeling Framework (check supplement for detail)

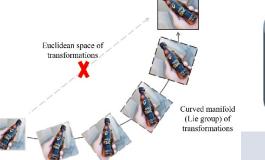
All current models fall in one combination of the following:

- Feature space
 - what data is available?
- Function space
 - what kind of mapping function is assumed?
- Deformation model
 - What is the relationship between Feature space and Function space?
- Similarity measurement
 - how similarly between warpped images and reference images?
- Search strategy:
 - how to improve the accuracy and time/computation expense and manage their trade-off?

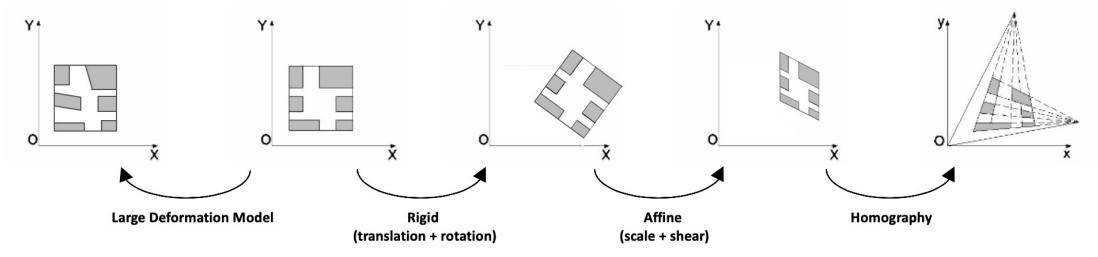
Ideal mapping: Diffeomorphic metric mapping (that is classic and elegant)

The ideal mapping is the **diffeomorphic mapping** that has the key characteristics of Diffeomorphism (preserve topology) listed below. All Image registration algorithms were trying to model in this way!

- smoothness:
 - infinite differentiability: $\frac{\delta \varphi(t)}{\delta t} = v(t)$
 - finite differentiability is more realistic. e.g. twice differentiability is often utilized on of Riemannian manifold
- continuity of mapping:
 - integrabliity: $\int_0^a v(t)dt = \varphi(a)$
- invertible derivatives: derivative is continuous
 - invertibility guaranteed: $\varphi_1 \circ I_0 = I_1$ and $\varphi_1^{-1} \circ I_1 = I_0$
 - no folding: Jacobian determinant is non-zero at the point
- smoothness + continuity + invertible derivatives
 - total derivate: all derivatives at a point on the manifold lay on the same tangent space.
- one-to-one:
 - compositions consistency: $(\varphi_2 \circ \varphi_1) \circ x = \varphi_2(\varphi_1(x))$
 - inverse consistency: $\varphi_1 \circ \varphi_{-1} = \varphi_{-1} \circ \varphi_1 = \varphi_0$



Evolution from linear to non-linear mapping



• Algorithm tried to learn the mapping function that is the transformation between source and reference images, denoted as the following: $\varphi(x, t) = \frac{\delta I(x,t)}{\Delta t}$

Mapping from
$$I_0$$
 to I_1
 $\varphi(x, t) \in \mathbb{C}^r$
Inverse mapping:
 $\varphi^{-1} \in \mathbb{C}^r$
Identity transform:
 $\phi_0(x) = x$

- The physical model of deformation evolved from:
 - Elastic Body
 - viscous fluid
 - Diffusion

•

- Fluid model (current)
- Parameterization (link constraint) became more detailed:
 - Velocity field $\frac{\delta \varphi}{\delta t} = v(\varphi(x, t), t)$
 - Momentum field v(x,t) = v(x,t) = f(m(x,t),h)
 - Regularization field L(x, t) = L(x, t) = f(h(x, t))

Novel method: Deep learning

• Why move from traditional methods to deep learning?

Method	Optimization algorithm	Modality of input	Advantage		
Traditional method	learn a mapping function for individual source-reference pairs through an iterative process, then warpping	Support multimodal data	Each source image have its "customized" registration		
Deep learning	learn a mapping function for all source-reference pair, warpping for each input	currently limited to monomodal data	100X faster during registration than the traditional methods, but usually spend more time during iterative learning		
	20	n12 I	Deen Medical Image Registration		

- To speed up registration process
 - Supervised transformation estimation
- To overcome the "golden standard " issue
 - Unsupervised transformation estimation
- To improve the training data size
 - Self-supervise (Contrast) learning

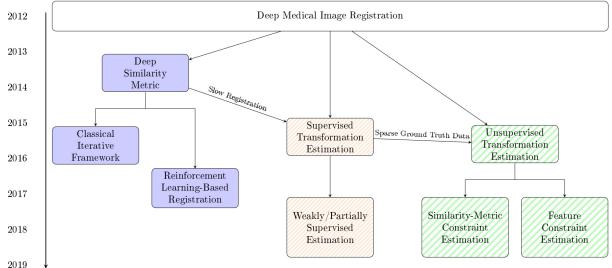


Fig. 1 An overview of deep learning based medical image registration broken down by approach type. The popular research directions are written in bold.

Tackle on the Issue 1: model a smooth mapping

Parameterization of Momentum and Regularization

		Constant Momentum: $v(x, t) = const$		Spatially-varying Momentum: v(x, t) = v(x) = f(m(x), h)		Spatio-temporally-varying Momentum: v(x, t) = v(x, t) = f(m(x, t), h)			
Constant regularizer: L(x, t) = h = const		-		Stationary Velocity Field (SVF) e.g <u>DARTEL</u> : v(x, t) = v(x), L(x, t) = const		Large Displacement Diffeomorphic Metric mMpping (LDDMM) e.g SHOOT: v(x, t) = v(x, t), L(x, t) = const			
Spatially-varyin $L(x, t) = L(x)$		-		c learning for image $x, t) = v(x), L(x, t)$			-		
	ally-varying regular f(t,t) = f(h(x,t))	rizer:		-	Regio	$\frac{\text{on-specific Diffeomorp}}{v(x,t) = v(x,t)}$, 2019:
	vSVF			LDDMM			RDMM		
source image	target image	warped image	source image	target image	warped image	source image	target image	warped image	
checkerboard	warped + grid	m - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1	checkerboard	warped + grid	[m] - 0.8 - 0.6 - 0.4 0.2	checkerboard	warped + grid	Im]	pre-weig

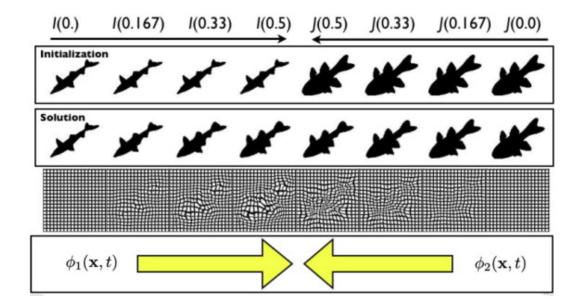
0.05

Tackle on the Issue 2: Absence of "Gold Standard"

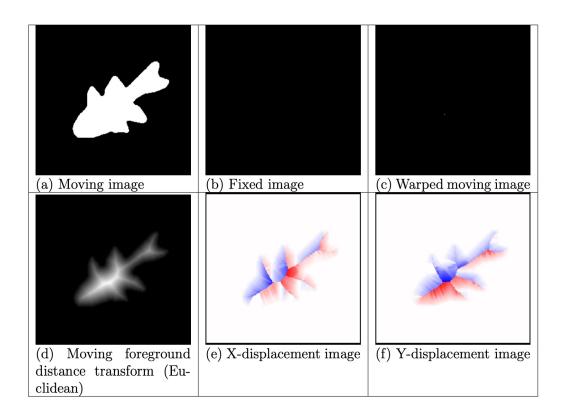
- Computer-generated scenes, self-supervised learning
 - Apply inverse warping and noise to the template to generate non-registered images.
 - Evaluate the algorithm performance by experimenting on different modifications of warping and noise

Tackle on the Issue 3: Invertibility unguaranteed

- Found solution: symmetrical optimization (ANTs::SyN), symmetry loss
 - Optimized the parameter of mapping function from both way, e.g. source->reference and reference->source.



Tackle on the Issue 4: Shape collapse problem



• Not yet found a feasible solution from the literature

Next to investigate:

- General
 - What happens during learning in the flow vector field and Jacobean field? (both the end and middle result)
 - How to target the difficult region at the early epoch?
- ABC-DS specific
 - How do shrinking and expansion cause worse issues for ABCDS data?
 - Is it possible to create an ABC-DS template through dimensional reduction with unsupervised deep learning?
- Deep learning specific
 - Is it possible to do embedding?
 - What is the appropriate size of hyper-parameter for the ABC-DS task?

Supplement: Modeling Framework- Feature space

How is the data?

- distance measure
- dimensionality of images (d = 2, 3, 4, \ldots)
- modality (binary, gray, color, . . .)
- mono-/multimodal images
- acquisition (PET, MRI, CT, SPECT . . .)
- inter/intra patient

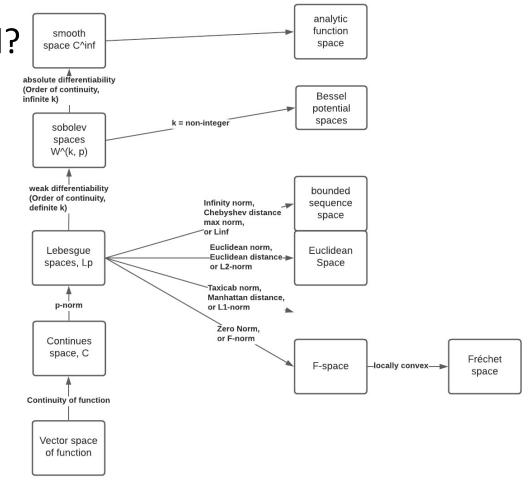


(not reviewed yet, please don't quote) ¹²

Supplement: Modeling Framework- Function space

What kind of mapping function is assumed?

- Sobolov spaces $\mathbb{W}^{k,p}$
- smooth space \mathbb{C}^{∞}



Construction of Function Space (not reviewed yet, please don't quote) ¹³

Supplement: Modeling Framework- Deformation model

What is the relationship between Feature space and Function space?

- linear approach
 - rigid (translation, rotation, reflection),
 - affine (translation, rotation, scaling, reflection, shearing),
- non-linear approach
 - elastic registration
 - viscous fluid flow models
 - diffusion registration
 - curvature registration
 - fluid registration (SHOOT, DARTEL, deep learning)

Supplement: Modeling Framework- Image similarity

How similarly is measured between warped images and reference images?

- Landmarks-based
 - sum of squared difference
- Image-based
 - mutual information
- Point-based
 - normalized cross correlation
 - sum of squared difference
 - Optical/Scene Flow

Supplement: Modeling Framework- Search strategy

How to improve the accuracy and time/computation expense and manage their trade-off?

- Numerical method
 - Gradient descent method
 - Finite Element method
 - Newton–Raphson method
 - Powell method
 - Genetic Algorithm

- Regularization

- local linearization
- global linearization + velocity field interpolation
- Diffusion Regularization
- Curvature Regularization
- Bending Energy
- Linear Elasticity
- Volume Preservation
- folding prevention
- smoothness